Blue Jackets

GP: 29 | W: 13 | L: 16 | OTL: 0 | P: 26
GF: 70 | GA: 75 | PP%: 20.00% | PK%: 82.73%
GM : Pascal Simoneau | Morale : 75 | Team Overall : 67
Next Games #469 vs Capitals

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Justin WilliamsX99.006640767475839573667672647388903675710
2Artem AnisimovX100.005436887086819168766972736779725575690
3Derek GrantXX100.007839896486706963786562746177705275660
4Josh ArchibaldXX98.008742846466748163576265746173684275660
5Victor RaskX100.006836907180716269786664576671667175650
6Steve BernierX100.007442746188928860545761625984745175640
7Tom PyattX100.005935926369776462656459805780724575640
8Garrett WilsonX100.008054895780696855515654625375785475620
9Carter CamperXXX100.005036906165939160706256555879715478620
10Ivan ProvorovX97.008239857478929573307571795863658675710
11Calvin de HaanX97.008637876276848761307454834875697075670
12Jack Johnson (A)X98.008645836483859562306856835180725675670
13Mark Borowiecki (A)X100.009981596179806659306856745178704575650
Scratches
1Dylan LarkinX97.007250689077889279898276747865778375740
2Joe Thornton (C)X99.005637787190808673787972587490843275700
3Tomas TatarX100.006939827766819376537274628077715875700
4Tyler GraovacX100.007437876291928961655960636171665977640
5Jason DemersX100.007438806376855061307262785179733875660
6Dan HamhuisX100.006840816278817361307254774887773875650
TEAM AVERAGE99.21734282677882816556686370617773547567
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Marc-Andre Fleury100.00979593769695979695979685894775780
2Michael Leighton97.00717068817069717069717088922575650
Scratches
TEAM AVERAGE98.5084838179838284838284838791367572
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Barry Trotz84958184847863CAN5624,000,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Dylan LarkinBlue JacketsC28916250100668210529848.57%760021.45358301051011950155.09%75700000.8312000410
2Artem AnisimovBlue JacketsC2971522-1207688411498.33%545315.6535820920001381249.23%39000000.9700000310
3Jack JohnsonBlue JacketsD2961218-3260653742152514.29%3265522.6246102398000188110.00%000000.5500000031
4Ivan ProvorovBlue JacketsD2961117-9120454858192210.34%3972224.90448381150110109010.00%000000.4700000014
5Calvin de HaanBlue JacketsD2911617-434051293213313.12%3669223.8716718113000089000.00%000000.4900000002
6Justin WilliamsBlue JacketsRW298715-518038398328539.64%256219.4142613960001231043.66%7100000.5300000000
7Joe ThorntonBlue JacketsC293912-62010395521505.45%255919.311679740003531050.18%54600000.4312000000
8Josh ArchibaldBlue JacketsC/RW294711-120075255015398.00%1052818.2315610940001581042.24%11600000.4200000010
9Tomas TatarBlue JacketsLW295510-714033467616576.58%359620.57022131040001471044.44%11700000.3401000011
10Dan HamhuisBlue JacketsD29459-28019132351517.39%3855819.273141268000067000.00%000000.3200000020
11Jason DemersBlue JacketsD26189-420133015486.67%2038414.7904451700003100.00%000000.4700000000
12Mark BorowieckiBlue JacketsD29268-46010813021779.52%2143114.89000315000028000.00%000000.3700011001
13Tom PyattBlue JacketsLW29336-7207233210169.38%331210.781125410001292042.03%6900000.3800000001
14Carter CamperBlue JacketsC/LW/RW163253002663350.00%11378.6000003000000055.56%900000.7300000101
15Garrett WilsonBlue JacketsLW2922412755413153613.33%12749.47000130000180040.00%1500000.2900001001
16Derek GrantBlue JacketsC/LW2822436021283612265.56%438213.660001200000181046.88%3200000.2100000010
17Steve BernierBlue JacketsRW29101-7100331115586.67%42408.3000002000001036.36%2200000.0800000001
18Victor RaskBlue JacketsC29101-760918158106.67%42408.2800000000000051.53%19600000.0800000000
19Tyler GraovacBlue JacketsC18000-62020510370.00%01749.6900005000040044.74%3800000.0000000000
Team Total or Average52268126194-66261156495907732275168.80%232851016.3025477220110751121077611550.29%237800000.462501281113
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marc-Andre FleuryBlue Jackets23111100.9122.29128503495580011.0003236410
2Michael LeightonBlue Jackets92500.8903.1545700242190111.0003623100
Team Total or Average32131600.9062.51174203737770121.00062929510


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Artem Anisimov (1 Way Contract)Blue JacketsC301988-05-24No198 Lbs6 ft4NoNoYes1UFAPro & Farm3,590,000$3,590,000$2,296,828$NoLink / NHL Link
Calvin de Haan (1 Way Contract)Blue JacketsD271991-05-09No195 Lbs6 ft1NoNoYes4RFAPro & Farm4,500,000$4,500,000$2,879,032$NoLink / NHL Link
Carter CamperBlue JacketsC/LW/RW301988-07-06No176 Lbs5 ft9NoNoNo2UFAPro & Farm995,000$995,000$636,586$NoLink / NHL Link
Dan Hamhuis (1 Way Contract)Blue JacketsD361982-12-13No204 Lbs6 ft1NoNoYes2UFAPro & Farm3,500,000$3,500,000$2,239,247$NoLink / NHL Link
Derek GrantBlue JacketsC/LW281990-04-20No215 Lbs6 ft3NoNoYes1UFAPro & Farm900,000$900,000$575,806$NoLink / NHL Link
Dylan Larkin (1 Way Contract)Blue JacketsC221996-07-30No198 Lbs6 ft1NoNoYes4ELCPro & Farm5,975,000$5,975,000$3,822,715$NoLink / NHL Link
Garrett WilsonBlue JacketsLW271991-03-16No199 Lbs6 ft2NoNoNo1RFAPro & Farm750,000$750,000$479,839$NoLink / NHL Link
Ivan ProvorovBlue JacketsD211997-01-13No201 Lbs6 ft1NoNoYes1ELCPro & Farm925,000$925,000$591,801$NoLink / NHL Link
Jack Johnson (1 Way Contract)Blue JacketsD311987-01-13No227 Lbs6 ft1NoNoYes3UFAPro & Farm3,250,000$3,250,000$2,079,301$NoLink / NHL Link
Jason Demers (Out of Payroll)Blue JacketsD301988-06-09No195 Lbs6 ft1NoNoYes4UFAPro & Farm2,225,000$0$0$YesLink / NHL Link
Joe Thornton (1 Way Contract)Blue JacketsC391979-07-02No220 Lbs6 ft4NoNoYes1UFAPro & Farm7,570,000$7,570,000$4,843,172$NoLink / NHL Link
Josh ArchibaldBlue JacketsC/RW261992-10-06No176 Lbs5 ft10NoNoYes2RFAPro & Farm925,000$925,000$591,801$NoLink / NHL Link
Justin Williams (1 Way Contract)Blue JacketsRW371981-10-04No184 Lbs6 ft1NoNoYes1UFAPro & Farm3,782,000$3,782,000$2,419,667$NoLink / NHL Link
Marc-Andre Fleury (1 Way Contract)Blue JacketsG341984-11-28No180 Lbs6 ft2NoNoYes2UFAPro & Farm6,410,000$6,410,000$4,101,022$NoLink / NHL Link
Mark BorowieckiBlue JacketsD291989-07-12No207 Lbs6 ft1NoNoYes1UFAPro & Farm650,000$650,000$415,860$NoLink / NHL Link
Michael LeightonBlue JacketsG371981-05-19No186 Lbs6 ft3NoNoYes2UFAPro & Farm900,000$900,000$575,806$NoLink / NHL Link
Steve BernierBlue JacketsRW331985-03-31No222 Lbs6 ft3NoNoNo1UFAPro & Farm999,999$999,999$639,784$NoLink / NHL Link
Tom Pyatt (1 Way Contract)Blue JacketsLW311987-02-14No185 Lbs5 ft11NoNoYes2UFAPro & Farm2,255,000$2,255,000$1,442,715$NoLink / NHL Link
Tomas Tatar (1 Way Contract)Blue JacketsLW281990-12-01No182 Lbs5 ft10NoNoYes3UFAPro & Farm2,600,000$2,600,000$1,663,441$NoLink / NHL Link
Tyler GraovacBlue JacketsC251993-04-27No208 Lbs6 ft5NoNoNo1RFAPro & Farm750,000$750,000$479,839$NoLink / NHL Link
Victor Rask (1 Way Contract)Blue JacketsC251993-03-01No200 Lbs6 ft2NoNoYes1RFAPro & Farm2,060,000$2,060,000$1,317,957$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2129.81198 Lbs6 ft11.902,643,429$

Sum Year 1 Salary Sum Year 2 Salary Sum Year 3 Salary Sum Year 4 Salary Sum Year 5 Salary
55,511,999$33,535,000$18,550,000$12,700,000$0$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Justin Williams40023
2Derek GrantJosh Archibald30023
3Garrett WilsonArtem Anisimov20122
4Tom PyattVictor RaskSteve Bernier10131
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Ivan ProvorovCalvin de Haan40122
2Jack Johnson36122
3Mark Borowiecki24221
4Calvin de HaanIvan Provorov0122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Justin Williams60005
2Artem AnisimovTom PyattJosh Archibald40005
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Ivan ProvorovCalvin de Haan60023
2Jack Johnson40023
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
160041
2Josh ArchibaldTom Pyatt40041
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Calvin de HaanIvan Provorov60230
2Jack JohnsonMark Borowiecki40230
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Josh Archibald60122Ivan Provorov60122
2Tom Pyatt40122Calvin de HaanJack Johnson40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Josh ArchibaldArtem Anisimov60122
240122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Calvin de HaanIvan Provorov60122
2Jack Johnson40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Calvin de Haan
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Tom PyattJack JohnsonCalvin de Haan
Extra Forwards
Normal PowerPlayPenalty Kill
, Josh Archibald, Tom Pyatt, Josh ArchibaldJosh Archibald
Extra Defensemen
Normal PowerPlayPenalty Kill
Jack Johnson, Calvin de Haan, Ivan ProvorovJack JohnsonJack Johnson, Calvin de Haan
Penalty Shots
, Tom Pyatt, Artem Anisimov, , Josh Archibald
Goalie
#1 : Michael Leighton, #2 : Marc-Andre Fleury
Custom OT Lines Forwards
, , , Justin Williams, Victor Rask, Artem Anisimov, Artem Anisimov, Josh Archibald, Derek Grant, Garrett Wilson, Tom Pyatt
Custom OT Lines Defensemen
Ivan Provorov, , Calvin de Haan, Jack Johnson,


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
2926L17012619677377923226164923
All Games
GPWLOTWOTL SOWSOLGFGA
29111600207075
Home Games
GPWLOTWOTL SOWSOLGFGA
179700104936
Visitor Games
GPWLOTWOTL SOWSOLGFGA
122900102139
Last 10 Games
WLOTWOTL SOWSOL
460000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
1252520.00%1101982.73%1
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
28423924692724172
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
47896349.64%48696450.41%23244052.73%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
692480688219368179


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
3 - 2019-10-0416Maple Leafs1Blue Jackets5WBoxScore
4 - 2019-10-0522Blue Jackets2Penguins1WXXBoxScore
6 - 2019-10-0735Sabres0Blue Jackets1WBoxScore
10 - 2019-10-1159Ducks0Blue Jackets3WBoxScore
11 - 2019-10-1269Blue Jackets4Hurricanes3WBoxScore
15 - 2019-10-1694Stars0Blue Jackets2WBoxScore
17 - 2019-10-18110Blue Jackets2Blackhawks4LBoxScore
18 - 2019-10-19120Islanders3Blue Jackets2LBoxScore
20 - 2019-10-21129Blue Jackets3Maple Leafs5LBoxScore
23 - 2019-10-24148Hurricanes2Blue Jackets1LBoxScore
25 - 2019-10-26165Blue Jackets4Flyers6LBoxScore
29 - 2019-10-30189Oilers1Blue Jackets2WXXBoxScore
31 - 2019-11-01200Blue Jackets2Blues1WBoxScore
32 - 2019-11-02212Flames5Blue Jackets2LBoxScore
35 - 2019-11-05227Golden Knights2Blue Jackets1LBoxScore
37 - 2019-11-07246Blue Jackets1Coyotes2LBoxScore
39 - 2019-11-09260Blue Jackets0Avalanche3LBoxScore
42 - 2019-11-12273Blue Jackets1Canadiens3LBoxScore
45 - 2019-11-15297Blues2Blue Jackets5WBoxScore
49 - 2019-11-19322Canadiens4Blue Jackets6WBoxScore
51 - 2019-11-21337Red Wings1Blue Jackets2WBoxScore
53 - 2019-11-23352Blue Jackets0Jets3LBoxScore
55 - 2019-11-25369Senators1Blue Jackets5WBoxScore
57 - 2019-11-27384Flyers2Blue Jackets1LBoxScore
59 - 2019-11-29400Penguins4Blue Jackets3LBoxScore
60 - 2019-11-30410Blue Jackets1Islanders3LBoxScore
63 - 2019-12-03429Coyotes4Blue Jackets3LBoxScore
65 - 2019-12-05444Rangers4Blue Jackets5WBoxScore
67 - 2019-12-07458Blue Jackets1Panthers5LBoxScore
69 - 2019-12-09469Blue Jackets-Capitals-
72 - 2019-12-12490Blue Jackets-Penguins-
74 - 2019-12-14501Blue Jackets-Senators-
76 - 2019-12-16521Capitals-Blue Jackets-
77 - 2019-12-17529Blue Jackets-Red Wings-
79 - 2019-12-19541Kings-Blue Jackets-
81 - 2019-12-21561Devils-Blue Jackets-
83 - 2019-12-23573Blue Jackets-Islanders-
87 - 2019-12-27585Blue Jackets-Capitals-
89 - 2019-12-29604Blackhawks-Blue Jackets-
91 - 2019-12-31619Panthers-Blue Jackets-
93 - 2020-01-02627Blue Jackets-Bruins-
95 - 2020-01-04642Sharks-Blue Jackets-
97 - 2020-01-06662Blue Jackets-Kings-
98 - 2020-01-07674Blue Jackets-Ducks-
100 - 2020-01-09688Blue Jackets-Sharks-
102 - 2020-01-11700Blue Jackets-Golden Knights-
105 - 2020-01-14719Bruins-Blue Jackets-
107 - 2020-01-16733Hurricanes-Blue Jackets-
109 - 2020-01-18751Devils-Blue Jackets-
110 - 2020-01-19758Blue Jackets-Rangers-
113 - 2020-01-22766Jets-Blue Jackets-
123 - 2020-02-01792Blue Jackets-Sabres-
124 - 2020-02-02807Blue Jackets-Canadiens-
126 - 2020-02-04818Panthers-Blue Jackets-
129 - 2020-02-07841Red Wings-Blue Jackets-
130 - 2020-02-08851Avalanche-Blue Jackets-
132 - 2020-02-10863Lightning-Blue Jackets-
135 - 2020-02-13880Blue Jackets-Sabres-
136 - 2020-02-14893Rangers-Blue Jackets-
138 - 2020-02-16912Blue Jackets-Devils-
140 - 2020-02-18920Blue Jackets-Flyers-
142 - 2020-02-20936Flyers-Blue Jackets-
144 - 2020-02-22955Blue Jackets-Predators-
146 - 2020-02-24967Senators-Blue Jackets-
147 - 2020-02-25978Blue Jackets-Wild-
Trade Deadline --- Trades can’t be done after this day is simulated!
150 - 2020-02-28995Wild-Blue Jackets-
152 - 2020-03-011013Canucks-Blue Jackets-
155 - 2020-03-041030Blue Jackets-Flames-
158 - 2020-03-071058Blue Jackets-Oilers-
159 - 2020-03-081064Blue Jackets-Canucks-
163 - 2020-03-121088Penguins-Blue Jackets-
165 - 2020-03-141105Predators-Blue Jackets-
167 - 2020-03-161118Blue Jackets-Bruins-
170 - 2020-03-191141Capitals-Blue Jackets-
172 - 2020-03-211155Blue Jackets-Maple Leafs-
174 - 2020-03-231171Blue Jackets-Devils-
175 - 2020-03-241178Blue Jackets-Rangers-
178 - 2020-03-271199Blue Jackets-Lightning-
179 - 2020-03-281212Blue Jackets-Stars-
181 - 2020-03-301226Islanders-Blue Jackets-
184 - 2020-04-021249Lightning-Blue Jackets-
185 - 2020-04-031255Blue Jackets-Hurricanes-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2Level 3Level 4Luxury
Arena Capacity57504750375027501000
Ticket Price1251007550300
Attendance92,22676,79358,83445,20916,098
Attendance PCT94.35%95.10%92.29%96.70%94.69%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
24 17009 - 94.50% 2,258,085$38,387,438$18000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches SalariesSpecial Salary Cap Value
21,296,803$ 55,511,999$ 52,511,999$ 0$ 0$
Salary Cap Per DaysSalary Cap To DateLuxury Taxe TotalPlayers In Salary CapPlayers Out of Salary Cap
53,286,999$ 19,556,870$ 0$ 20 1

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
54,194,030$ 119 319,957$ 38,074,883$

Team Total Estimate
Estimated Season ExpensesEstimated Season Salary CapCurrent Bank AccountProjected Bank Account
39,853,219$ 53,286,999$ 30,775,150$ 47,004,573$



Depth Chart

Left WingCenterRight Wing
Tomas TatarAGE:28PO:58OV:70
Derek GrantAGE:28PO:52OV:66
Tom PyattAGE:31PO:45OV:64
Garrett WilsonAGE:27PO:54OV:62
Carter CamperAGE:30PO:54OV:62
Turner ElsonAGE:26PO:58OV:61
Dylan LarkinAGE:22PO:83OV:74
Joe ThorntonAGE:39PO:32OV:70
Artem AnisimovAGE:30PO:55OV:69
Derek GrantAGE:28PO:52OV:66
Josh ArchibaldAGE:26PO:42OV:66
Victor RaskAGE:25PO:71OV:65
Tyler GraovacAGE:25PO:59OV:64
Carter CamperAGE:30PO:54OV:62
Turner ElsonAGE:26PO:58OV:61
Justin WilliamsAGE:37PO:36OV:71
Josh ArchibaldAGE:26PO:42OV:66
Steve BernierAGE:33PO:51OV:64
Wayne SimpsonAGE:29PO:55OV:62
Carter CamperAGE:30PO:54OV:62
Patrick RussellAGE:25PO:51OV:61
Chris ThorburnAGE:35PO:42OV:61

Defense #1Defense #2Goalie
Ivan ProvorovAGE:21PO:86OV:71
Calvin de HaanAGE:27PO:70OV:67
Jack JohnsonAGE:31PO:56OV:67
Jason DemersAGE:30PO:38OV:66
Mark BorowieckiAGE:29PO:45OV:65
Dan HamhuisAGE:36PO:38OV:65
Chris BreenAGE:29PO:55OV:61
William LagessonAGE:22PO:62OV:60
Justin HollAGE:26PO:61OV:59
Steve OleksyAGE:32PO:52OV:59
Marc-Andre FleuryAGE:34PO:47OV:78
Charlie LindgrenAGE:25PO:47OV:65
Michael LeightonAGE:37PO:25OV:65
Michael GarteigAGE:27PO:45OV:62

Prospects

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Prospect Team NameDraft Year Overall Pick Information Lien
4e compensatoire 2020Blue Jackets21120
A.J. JenksBlue Jackets
Allen YorkBlue Jackets
Andrej NestrasilBlue Jackets
Anthony CamaraBlue Jackets
Ben SmithBlue Jackets
Blake TatchellBlue Jackets
Brad BoyesBlue Jackets
Brock BeukeboomBlue Jackets
Cam ReidBlue Jackets
Dane WaltersBlue Jackets
Daniel SedinBlue Jackets
Derek MathersBlue Jackets
Devin SetoguchiBlue Jackets
Drayson BowmanBlue Jackets
Graeme ClarkBlue Jackets2165
Harrison RuoppBlue Jackets
Iiro PakarinenBlue Jackets
Jakub KindlBlue Jackets
Jaroslav PavelkaBlue Jackets
Jean DupuyBlue Jackets
Jeff JakaitisBlue Jackets
Jesse BlackerBlue Jackets
Joe RehkampBlue Jackets
Johnny OduyaBlue Jackets
Jonatan AsplundBlue Jackets
Jordan SpenceBlue Jackets2183
Josh HansonBlue Jackets
Jussi JokinenBlue Jackets
Kenton HelgesenBlue Jackets
Kyle SchemppBlue Jackets
Mark FayneBlue Jackets
Matt BaileyBlue Jackets
Mitch ElliotBlue Jackets
Morgan EllisBlue Jackets
Nathan LégaréBlue Jackets2130
Nick WaltersBlue Jackets
PA ParenteauBlue Jackets
Samuel PoulinBlue Jackets2125
Shane DoanBlue Jackets
Shane EisermanBlue Jackets
Thomas PelletierBlue Jackets21145
Tom GilbertBlue Jackets
Xavier ParentBlue Jackets21149
Xavier SimoneauBlue Jackets

Draft Picks

Year R1R2R3R4R5R6R7R8
22WSH CBJ
23CBJ CBJ CBJ CBJ CBJ CBJ CBJ CBJ
24CBJ CBJ CBJ CBJ CBJ CBJ CBJ CBJ
25CBJ CBJ CBJ CBJ CBJ CBJ CBJ CBJ
26CBJ CBJ CBJ CBJ CBJ CBJ CBJ CBJ



[2019-10-02 19:02:40] - Jack Johnson has been selected as assistant for Blue Jackets.
[2019-10-02 19:02:40] - Unknown Player is no longer as assistant for Blue Jackets.
[2019-10-02 19:02:40] - Mark Borowiecki has been selected as assistant for Blue Jackets.
[2019-10-02 19:02:40] - Unknown Player is no longer as assistant for Blue Jackets.
[2019-09-28 22:02:07] - TRADE : From Devils to Blue Jackets : Victor Rask.
[2019-09-28 22:02:07] - TRADE : From Blue Jackets to Devils : Pavel Shen (P).
[2019-09-28 22:00:03] - TRADE : From Ducks to Blue Jackets : Derek Grant.
[2019-09-28 22:00:03] - TRADE : From Blue Jackets to Ducks : Y:22-RND:8-CBJ, Y:22-RND:6-CBJ.
[2019-08-20 21:05:32] - TRADE : From Panthers to Blue Jackets : Michael Garteig.
[2019-08-20 21:04:48] - TRADE : From Panthers to Blue Jackets : Charlie Lindgren, Chris Thorburn, Carter Camper, Josh Archibald, Patrick Russell, Wayne Simpson.
[2019-08-20 21:04:48] - TRADE : From Blue Jackets to Panthers : Cam Ward.



OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
LHS1082313101091023222210411911000651311112041122001035101111-1062232381613105296742327088441017817110284088273616822584818.60%2014080.10%11025207049.52%1014211148.03%586116850.17%165291918767821486710
LHS11823631032372332201341201301124126992741161802113107121-147223338661920491057311263176193192446264578353715192634918.63%2665081.20%41011203149.78%1006200550.17%594114551.88%171896417857701475731
LHS12823630043632352191641211202222117991841151802141118120-2722353796145260709519269490585091857256888768015402875719.86%2995581.61%51128209553.84%1066210250.71%593117150.64%1777102717477641447716
LHS1382392603365257217404120120212414511035411914012411121075782574376944569968314281389698790167260786944115652695319.70%1893581.48%01041207450.19%1028201650.99%633122451.72%1803105717387331441730
LHS1482441801577266210564119110044313311122412570113413399348826644471033658610717280295389992479251982448116782935418.43%2103782.38%81076209251.43%998193351.63%611117352.09%1856109716897421453735
LHS158235250056112342161841199003461231032041161600225111113-2702343946282563778813269488388889679265489041915732764215.22%2093981.34%41074209651.24%1044205650.78%596118250.42%1846108217227351446736
LHS168243240434426021545412211022221331013241211302122127114138626046772707102727812254885886380051225360666016142353816.17%2624383.59%31519282753.73%1468275753.25%673125453.67%2028143319275861026514
LHS178645260343524719552432311031231341003443221500312113951890247441688259770749264390588282457222961865716342394719.67%2363186.86%31651300754.91%1458276552.73%674125453.75%2159153419716031083549
LHS18824128010572532094441191600042122107154122120101513110229822534477004499777114260592983580781228468247315622273314.54%1652485.45%01493282452.87%1330254552.26%701126055.63%2067147918795701036525
LHS1982333102628222225-341201202412129108214113190021693117-2466222398620066979708239977878979773223770741615392383715.55%1572782.80%01424268153.11%1385258553.58%709126556.05%2065148218985671023521
LHS20824525051512421865641201603020116942241259021311269234902424316733797686713242582277680346238873470216902754315.64%3214984.74%11411281250.18%1439287150.12%631123451.13%1970136919545961034516
LHS582303902524266314-4841181801121146155-941122101403120159-39602664667320188849062558790936808442674100188517022505321.20%2447868.03%7825169048.82%854173349.28%741145550.93%166589719178501559777
LHS682283401676236251-1541141800324118125-741141601352118126-8562363856210347968515264784790387282252484678916862284218.42%2685479.85%9968194249.85%971192950.34%646132348.83%1678916388117091523747
LHS782313700329220259-3941191700212120126-641122000117100133-3362220362582105580836260782291285851254779279817142344117.52%2995681.27%8964191350.39%885184547.97%654136347.98%170294617707811507731
LHS882273504349233265-3241151502144130137-741122002205103128-25542333766091356898013251681085382666265092073616152053818.54%2876378.05%4956187850.91%994203348.89%578119848.25%164789718247811519733
LHS98230320645525424864115170312312912364115150333212512506025442567941559692152765862101085567259480846615592665520.68%1642783.54%41055207550.84%995196250.71%595122948.41%1810106617177451466732
21291116000207075-51797000104936131229000102139-18267012619623272417277328423924697792322616491252520.00%1101982.73%147896349.64%48696450.41%23244052.73%692480688219368179
Total Regular Season13455854880405378101396037462146753122260212643472101184525667027326201927355418591901-4211743960674510705345511501365132721042828139491457013876106540992130811013726521416875518.11%388772781.30%62190993707051.52%184213621250.87%104472033851.37%301441865331990125392190110891
Playoff
LHS11734000002124-330300000613-74310000015114621355600810302338079740235582611019526.32%14285.71%110417659.09%7416744.31%5910655.66%150911496012057
LHS121046000002930-1523000001317-4523000001613382951801051211136398127118203411117320032618.75%34682.35%013126749.06%13926253.05%7615947.80%2221252279618291
LHS131798000004850-2954000002834-684400000201641848841320112171635851532102071554618077340581017.24%36975.00%023848249.38%21743649.77%13523856.72%380223367153296151
LHS14945000002122-1523000001316-3422000008628213960016780296100103930283957015738718.42%30486.67%112325149.00%11323348.50%7512858.59%1941141938015176
LHS15136700000353146240000016160743000001915412355893001111121440160144121154331337824034720.59%39489.74%018934255.26%17935151.00%12220559.51%298176282121235117
LHS161266000003437-36420000019190624000001518-31234649800158110363111122125535390117288511121.57%50786.00%123144851.56%19839350.38%9820747.34%3072162748014773
LHS17734000001517-241300000511-63210000010646152944104380206547469918054411271516.67%13192.31%011723050.87%12721957.99%439545.26%176128170508945
LHS1817890000047398945000002824484400000191541647871340221101514961791371572354016013735946510.87%48491.67%131356655.30%35966054.39%13525253.57%409289452129220108
LHS2051400000717-1030300000111-102110000066027142100412014356474001704640921417.14%19573.68%010017158.48%8017645.45%377748.05%11580122356230
Total Playoff97445300000257267-1050203000000129161-3247242300000128106228825746171824867986631259911043100487308192765919133075317.26%2834285.16%41546293352.71%1486289751.29%780146753.17%2254144622398081507753