Phantoms

GP: 8 | W: 5 | L: 3 | OTL: 0 | P: 10
GF: 27 | GA: 22 | PP%: 16.00% | PK%: 73.91%
GM : Samuel Bessette | Morale : 75 | Team Overall : 61
Next Games #119 vs Eagles
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Chris StewartX100.006653756789767166556468626779726575650
2Rene BourqueX100.006854686384766462506169546386732075630
3Kevin RoyX100.006035836763826266506170656869666075630
4Adam TambelliniXX100.006445715782798456565960625967606375620
5Tobias LindbergXX100.006543725785689356595752565662586775610
6Drew ShoreX100.005654935984715658636255535775646275600
7Logan BrownX100.005240796290754960606259566060569375600
8Ryan BourqueXX100.005442735860689557646054565767636175590
9Nathan WalkerX100.005944715961717658646056586064606875590
10Rourke ChartierX100.005940796250825260616357565862585075590
11Adam GaudetteX100.005240796264756560616259566061576175590
12Dylan GambrellX100.006240796270754860616259566061577475590
13Mark AltX99.386335846087725760306060656073676075630
14Karl StolleryX100.005938866068825660306555535280673475610
15Frederic Allard (R)X100.006041715873767857306159625661574575610
16Kyle BurroughsX100.006041545572808555306057635665594575600
17Jacob Larsson (R)X100.006344705579757654306056585561578175600
18Andre Benoit (R)X100.005940675470757654306056585584712475600
Scratches
1Gregory ChaseXXX100.005941775468757353645460565363595075580
2Petteri LindbohmX100.005642745381757152305359565164605375580
3Keith AulieX100.006041785193755750305158565068645475570
TEAM AVERAGE99.95604375597575695848605958586862577560
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Shane Starrett100.00616564956059616059616069735775630
2Pheonix Copley100.00605588865958605958605973774275620
Scratches
1Marek Mazanec100.00605667845958605958605973774275610
TEAM AVERAGE100.0060597388595860595860597276477562
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Lindy Ruff73717478888347CAN582800,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Kevin RoyPhantoms (PHI)LW857123206193782513.51%218322.991238230000171043.84%7300001.3000000121
2Adam TambelliniPhantoms (PHI)C/LW835852015152781611.11%216020.100118200000141147.43%17500001.0000000111
3Chris KellyFlyersC/LW7347000372861810.71%314921.30112919000080146.15%11700000.9400000100
4Mark AltPhantoms (PHI)D7156610081571414.29%713419.2200011400009000.00%000000.8900000000
5Karl StolleryPhantoms (PHI)D8156-2804615266.67%1317722.24112921000019000.00%000000.6700000000
6Tobias LindbergPhantoms (PHI)LW/RW8246420108226109.09%015619.610006190000102043.75%3200000.7600000101
7Dylan GambrellPhantoms (PHI)C842662012112010920.00%313516.901014140000110160.00%1000000.8900000100
8Kyle BurroughsPhantoms (PHI)D81454401313174105.88%1217421.77000921000019000.00%000000.5700000000
9Frederic AllardPhantoms (PHI)D814548014911299.09%1218623.32011422000018000.00%000000.5400000000
10Rene BourquePhantoms (PHI)RW8134100205185205.56%217722.130111220000110048.53%6800000.4500000010
11Drew ShorePhantoms (PHI)C812339561414377.14%112615.7800013000000053.57%14000000.4800001001
12Logan BrownPhantoms (PHI)C83031758141671418.75%312115.2200000000000057.14%2100000.4900000000
13Chris StewartPhantoms (PHI)RW11121552261316.67%02121.9701103000011055.56%900001.8200100000
14Ryan BourquePhantoms (PHI)C/LW5011100845290.00%07615.2300000000000016.67%600000.2600000000
15Gregory ChasePhantoms (PHI)C/LW/RW8011-300323020.00%0344.3200022000000050.00%600000.5800000000
16Adam GaudettePhantoms (PHI)C8011100023100.00%0101.3400001000040040.00%500001.8600000000
17Andre BenoitPhantoms (PHI)D80110201356340.00%613817.290002700001000.00%000000.1400000000
18Nathan WalkerPhantoms (PHI)LW5000-100000010.00%020.53000000000000100.00%100000.0000000000
19Jacob LarssonPhantoms (PHI)D80000201184140.00%1213316.6900000000012000.00%000000.0000000000
20Rourke ChartierPhantoms (PHI)C4000-100101000.00%071.75000000000000100.00%100000.0000000000
21Casey MittelstadtFlyersC3000000665040.00%04314.6300000000000057.14%700000.0000000000
Team Total or Average1442750773363151631652657017510.19%78235216.3448126422000001625348.58%67100000.6500101544
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Shane StarrettPhantoms (PHI)85300.9172.6348000212540010.000080010
Team Total or Average85300.9172.6348000212540010.000080010


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Adam GaudettePhantoms (PHI)C211996-12-31No170 Lbs6 ft1NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Adam TambelliniPhantoms (PHI)C/LW231994-12-31No191 Lbs6 ft3NoNoNo3ELCPro & Farm616,000$0$0$NoLink / NHL Link
Andre BenoitPhantoms (PHI)D331984-12-31Yes190 Lbs5 ft11NoNoNo3UFAPro & Farm925,000$0$0$NoLink / NHL Link
Chris Stewart (1 Way Contract)Phantoms (PHI)RW301987-12-31No242 Lbs6 ft2NoNoYes1UFAPro & Farm1,000,000$1,000,000$898,876$NoLink / NHL Link
Drew Shore (1 Way Contract)Phantoms (PHI)C261991-12-31No205 Lbs6 ft3NoNoNo1RFAPro & Farm1,200,000$1,200,000$1,078,652$NoLink / NHL Link
Dylan GambrellPhantoms (PHI)C211996-12-31No195 Lbs6 ft0NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Frederic AllardPhantoms (PHI)D201997-12-31Yes179 Lbs6 ft1NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Gregory ChasePhantoms (PHI)C/LW/RW221995-12-31No190 Lbs6 ft0NoNoNo1ELCPro & Farm550,000$0$0$NoLink / NHL Link
Jacob LarssonPhantoms (PHI)D201997-12-31Yes195 Lbs6 ft2NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Karl StolleryPhantoms (PHI)D301987-12-31No180 Lbs5 ft11NoNoYes1UFAPro & Farm550,000$0$0$NoLink / NHL Link
Keith AuliePhantoms (PHI)D281989-12-31No222 Lbs6 ft6NoNoNo1UFAPro & Farm550,000$0$0$NoLink / NHL Link
Kevin RoyPhantoms (PHI)LW241993-12-31No170 Lbs5 ft9NoNoNo1RFAPro & Farm925,000$0$0$NoLink / NHL Link
Kyle BurroughsPhantoms (PHI)D221995-12-31No198 Lbs5 ft11NoNoNo1ELCPro & Farm577,000$0$0$NoLink / NHL Link
Logan BrownPhantoms (PHI)C191998-12-31No220 Lbs6 ft6NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Marek MazanecPhantoms (PHI)G261991-12-31No187 Lbs6 ft4NoNoNo1RFAPro & Farm650,000$0$0$NoLink / NHL Link
Mark AltPhantoms (PHI)D261991-12-31No201 Lbs6 ft4NoNoNo3RFAPro & Farm800,000$0$0$NoLink / NHL Link
Nathan WalkerPhantoms (PHI)LW231994-12-31No186 Lbs5 ft9NoNoNo3ELCPro & Farm579,000$0$0$NoLink / NHL Link
Petteri LindbohmPhantoms (PHI)D241993-12-31No198 Lbs6 ft3NoNoNo3RFAPro & Farm550,000$0$0$NoLink / NHL Link
Pheonix CopleyPhantoms (PHI)G251992-12-31No200 Lbs6 ft4NoNoNo2RFAPro & Farm700,000$0$0$NoLink / NHL Link
Rene Bourque (1 Way Contract)Phantoms (PHI)RW361981-12-31No217 Lbs6 ft2NoNoYes1UFAPro & Farm1,000,000$1,000,000$898,876$NoLink / NHL Link
Rourke ChartierPhantoms (PHI)C211996-12-31No190 Lbs5 ft1NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Ryan BourquePhantoms (PHI)C/LW261991-12-31No185 Lbs5 ft9NoNoNo1RFAPro & Farm900,000$0$0$NoLink / NHL Link
Shane StarrettPhantoms (PHI)G231994-12-31No189 Lbs6 ft5NoNoNo1ELCPro & Farm650,000$0$0$NoLink / NHL Link
Tobias LindbergPhantoms (PHI)LW/RW221995-12-31No225 Lbs6 ft3NoNoNo1ELCPro & Farm600,000$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2424.63197 Lbs6 ft11.96786,333$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kevin RoyAdam TambelliniChris Stewart40122
2Tobias LindbergDrew ShoreRene Bourque30122
3Ryan BourqueLogan BrownAdam Gaudette20122
4Nathan WalkerDylan GambrellChris Stewart10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Karl StolleryFrederic Allard40122
2Kyle BurroughsAndre Benoit30122
3Jacob LarssonDylan Gambrell20122
4Karl StolleryFrederic Allard10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Kevin RoyAdam TambelliniChris Stewart60122
2Tobias LindbergDrew ShoreRene Bourque40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Karl StolleryFrederic Allard60122
2Kyle BurroughsAndre Benoit40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Chris StewartRene Bourque60122
2Kevin RoyAdam Tambellini40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Karl StolleryFrederic Allard60122
2Kyle BurroughsAndre Benoit40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Chris Stewart60122Karl StolleryFrederic Allard60122
2Rene Bourque40122Kyle BurroughsAndre Benoit40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Chris StewartRene Bourque60122
2Kevin RoyAdam Tambellini40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Karl StolleryFrederic Allard60122
2Kyle BurroughsAndre Benoit40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Kevin RoyAdam TambelliniChris StewartKarl StolleryFrederic Allard
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Kevin RoyAdam TambelliniChris StewartKarl StolleryFrederic Allard
Extra Forwards
Normal PowerPlayPenalty Kill
Adam Gaudette, Rourke Chartier, Logan BrownAdam Gaudette, Rourke ChartierLogan Brown
Extra Defensemen
Normal PowerPlayPenalty Kill
Jacob Larsson, Kyle Burroughs, Andre BenoitJacob LarssonKyle Burroughs, Andre Benoit
Penalty Shots
Chris Stewart, Rene Bourque, Kevin Roy, Adam Tambellini, Tobias Lindberg
Goalie
#1 : Shane Starrett, #2 : Pheonix Copley
Custom OT Lines Forwards
Chris Stewart, Rene Bourque, Kevin Roy, Adam Tambellini, Tobias Lindberg, Drew Shore, Drew Shore, Logan Brown, Ryan Bourque, Dylan Gambrell, Adam Gaudette
Custom OT Lines Defensemen
Karl Stollery, Frederic Allard, Kyle Burroughs, Andre Benoit, Jacob Larsson


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Barracuda11000000413110000004130000000000021.000481200713614370881061271412263133.33%50100.00%012828145.55%12925051.60%6913949.64%1931341865910050
2Devils11000000422110000004220000000000021.000461000713613670881061261311135120.00%2150.00%012828145.55%12925051.60%6913949.64%1931341865910050
3Eagles1010000013-2000000000001010000013-200.00012300713613470881061389619100.00%20100.00%012828145.55%12925051.60%6913949.64%1931341865910050
4Monsters1010000024-2000000000001010000024-200.000246107136124708810613913721400.00%3166.67%012828145.55%12925051.60%6913949.64%1931341865910050
5Senators10001000431000000000001000100043121.0004610007136127708810615194242150.00%2150.00%012828145.55%12925051.60%6913949.64%1931341865910050
6Thunderbirds11000000633110000006330000000000021.00061218007136145708810611831322300.00%4250.00%012828145.55%12925051.60%6913949.64%1931341865910050
Total8430100027225440000001871140301000915-6100.625275077107136126570881061255786316325416.00%23673.91%012828145.55%12925051.60%6913949.64%1931341865910050
8Wolves21100000660110000004131010000025-320.5006121800713615670881061561710387114.29%5180.00%012828145.55%12925051.60%6913949.64%1931341865910050
_Since Last GM Reset8430100027225440000001871140301000915-6100.625275077107136126570881061255786316325416.00%23673.91%012828145.55%12925051.60%6913949.64%1931341865910050
_Vs Conference3200100014862200000010551000100043161.0001424380071361108708810619525285910220.00%8450.00%012828145.55%12925051.60%6913949.64%1931341865910050
_Vs Division21000000660110000004221000000024-220.5006101610713616070881061652618349111.11%5260.00%012828145.55%12925051.60%6913949.64%1931341865910050

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
810W1275077265255786316310
All Games
GPWLOTWOTL SOWSOLGFGA
84310002722
Home Games
GPWLOTWOTL SOWSOLGFGA
4400000187
Visitor Games
GPWLOTWOTL SOWSOLGFGA
4031000915
Last 10 Games
WLOTWOTL SOWSOL
530000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
25416.00%23673.91%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
7088106171361
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
12828145.55%12925051.60%6913949.64%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1931341865910050


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0514Phantoms2Wolves5LBoxScore
4 - 2018-10-0720Phantoms1Eagles3LBoxScore
7 - 2018-10-1040Barracuda1Phantoms4WBoxScore
8 - 2018-10-1143Phantoms4Senators3WXBoxScore
10 - 2018-10-1368Wolves1Phantoms4WBoxScore
13 - 2018-10-1681Thunderbirds3Phantoms6WBoxScore
15 - 2018-10-1890Phantoms2Monsters4LBoxScore
17 - 2018-10-20109Devils2Phantoms4WBoxScore
19 - 2018-10-22119Eagles-Phantoms-
22 - 2018-10-25135Phantoms-Bruins-
24 - 2018-10-27155Sound Tigers-Phantoms-
27 - 2018-10-30167Phantoms-Gulls-
29 - 2018-11-01184Phantoms-Reign-
31 - 2018-11-03203Phantoms-Barracuda-
33 - 2018-11-05210Phantoms-Roadrunners-
36 - 2018-11-08234Roadrunners-Phantoms-
38 - 2018-11-10250IceHogs-Phantoms-
41 - 2018-11-13271Thunderbirds-Phantoms-
43 - 2018-11-15283Devils-Phantoms-
45 - 2018-11-17300Crunch-Phantoms-
49 - 2018-11-21320Phantoms-Americans-
50 - 2018-11-22341Wolf Pack-Phantoms-
51 - 2018-11-23356Phantoms-Marlies-
54 - 2018-11-26373Senators-Phantoms-
58 - 2018-11-30405Phantoms-Penguins-
63 - 2018-12-05434Monsters-Phantoms-
65 - 2018-12-07446Phantoms-Americans-
66 - 2018-12-08460Phantoms-Moose-
69 - 2018-12-11476Phantoms-Heat-
71 - 2018-12-13490Phantoms-Condors-
72 - 2018-12-14503Phantoms-Comets-
75 - 2018-12-17526Griffins-Phantoms-
77 - 2018-12-19536Admirals-Phantoms-
79 - 2018-12-21554Monsters-Phantoms-
80 - 2018-12-22563Phantoms-Wolf Pack-
81 - 2018-12-23576Phantoms-Crunch-
83 - 2018-12-25589Phantoms-Thunderbirds-
85 - 2018-12-27601Phantoms-Checkers-
86 - 2018-12-28613Phantoms-Admirals-
88 - 2018-12-30626Checkers-Phantoms-
90 - 2019-01-01641Heat-Phantoms-
92 - 2019-01-03654Rampage-Phantoms-
93 - 2019-01-04667Phantoms-Bears-
95 - 2019-01-06678Stars-Phantoms-
97 - 2019-01-08694Phantoms-Devils-
99 - 2019-01-10708Wild-Phantoms-
101 - 2019-01-12724Bruins-Phantoms-
104 - 2019-01-15745Phantoms-Rocket-
109 - 2019-01-20771Moose-Phantoms-
110 - 2019-01-21775Phantoms-Wolf Pack-
112 - 2019-01-23778Phantoms-Bruins-
114 - 2019-01-25798Condors-Phantoms-
116 - 2019-01-27807Comets-Phantoms-
119 - 2019-01-30834Reign-Phantoms-
121 - 2019-02-01846Gulls-Phantoms-
123 - 2019-02-03860Penguins-Phantoms-
124 - 2019-02-04868Phantoms-Wild-
128 - 2019-02-08898Griffins-Phantoms-
129 - 2019-02-09905Phantoms-Griffins-
131 - 2019-02-11923Crunch-Phantoms-
133 - 2019-02-13932Phantoms-Rocket-
135 - 2019-02-15952Penguins-Phantoms-
138 - 2019-02-18974Americans-Phantoms-
140 - 2019-02-20986Phantoms-Monsters-
141 - 2019-02-21994Phantoms-Devils-
Trade Deadline --- Trades can’t be done after this day is simulated!
143 - 2019-02-231013Phantoms-Sound Tigers-
146 - 2019-02-261030Bears-Phantoms-
149 - 2019-03-011055Phantoms-Sound Tigers-
151 - 2019-03-031070Senators-Phantoms-
154 - 2019-03-061090Bears-Phantoms-
155 - 2019-03-071097Phantoms-Marlies-
157 - 2019-03-091116Phantoms-Penguins-
159 - 2019-03-111130Rocket-Phantoms-
161 - 2019-03-131138Phantoms-IceHogs-
163 - 2019-03-151158Sound Tigers-Phantoms-
164 - 2019-03-161168Phantoms-Bears-
167 - 2019-03-191188Marlies-Phantoms-
170 - 2019-03-221204Phantoms-Checkers-
171 - 2019-03-231218Wolf Pack-Phantoms-
173 - 2019-03-251233Phantoms-Stars-
175 - 2019-03-271250Phantoms-Rampage-
177 - 2019-03-291267Checkers-Phantoms-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price2515
Attendance6,4843,118
Attendance PCT81.05%77.95%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
4 2401 - 80.02% 65,272$261,088$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
254,842$ 1,567,200$ 1,567,200$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 171,916$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,415,064$ 159 13,374$ 2,126,466$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
LHS0580204901343166289-1234012210023281128-47408280111185161-76401662584240753585091625454624525442390840433819051964221.43%33710469.14%6657132749.51%759160247.38%591126346.79%1380541188510491862892
LHS0680154804454189269-804010210232299131-32405270213290138-483018929948807368163151823488665634652023653388118561894222.22%3419073.61%17783152351.41%758146051.92%618125549.24%1427567372020931894930
LHS077695701522134304-170386270040168158-90383300112166146-80181342123461132603951422462431519251830627422716481773922.03%3099569.26%7628133746.97%594127046.77%551119945.95%134652114328321809897
LHS087695704213159329-170384300210179167-88385270211280162-82181592584172035546561466386519550202163692178216081553623.23%2467868.29%6602125448.01%651134148.55%484101747.59%130749314918081788903
LHS09803427072282532292440221301013133110234012140621512011916825340065327509698152258631746845712189679105521041855529.73%2314381.39%5875158055.38%864155655.53%596106256.12%154970415148411800899
LHS1080332805455246254-840161502313124148-24401713031421221061666246381627365083103122511745930788792594848108925801887137.77%2115374.88%5864170250.76%840171648.95%557111849.82%154972215998231710841
LHS1180204405542171234-63405260332174130-564015180222197104-74017128245314207171121541292615611482318784128516431484631.08%2507171.60%7546124144.00%750170444.01%41190645.36%133147716228801884951
LHS1276173307388220253-333881504146118137-193891803242102116-1434220340560114193712321555828157061022517829129417791946432.99%2448166.80%8755156748.18%803175945.65%500104347.94%140060715698141684837
LHS1380293102378279292-13401913020331541411340101800345125151-2658279453732107298100162713830929914822896950100419182005929.50%2888570.49%7898180549.75%954200147.68%604126547.75%154074016918261655816
LHS1480293901533213260-4740141800530103133-3040152101003110127-1758213351564216270776244578685079336270987566822181664124.70%2436473.66%2841163951.31%911187348.64%512102949.76%156373415918051677845
LHS158041220335627822256402410001141371092840171203242141113288227846073814691069512274990293289365272692238322352136430.05%1463377.40%5850181246.91%922186949.33%561114549.00%164484115927851625819
LHS167629340316321021003814180202295102-7381516011411151087582103755853484655212213771868470859246673343313912293314.41%1884476.60%01157226251.15%1399271051.62%609119650.92%1677112819435911000484
LHS178039270208427721265402112010421531124140181501042124100247827747375031105936914284995690694684231571838715312254319.11%1773977.97%01439278951.60%1361264451.48%672133950.19%1917133318946011051521
LHS18764219021662571837438228000351288741382011021311299633842574537101893748211255078982190682215462837514262114320.38%1692982.84%21272259948.94%1196251247.61%560116847.95%185112891780562994497
LHS198246260034326022832412414002101381152341221200133122113992260463723259482807264784086592147237671144915822193415.53%2045971.08%11305263549.53%1157258544.76%652134548.48%1962136619465961053527
208430100027225440000001871140301000915-610275077107136126570881061255786316325416.00%23673.91%012828145.55%12925051.60%6913949.64%1931341865910050
Total Regular Season119041654404844706833393790-45159522526101925303517021915-21359519128302919403316371875-238834333955088847245690311971121176331569931114201136591035921115672271327587292071624.52%360797473.00%78136002735349.72%140482885248.69%85471748948.87%236421220427461129712359611715
Playoff
LHS09624000001524-930300000614-832100000910-1415264100374115937565412278794912711218.18%15660.00%15111046.36%8715855.06%458652.33%105431436212971
LHS10624000001623-731200000913-431200000710-3416223810456116660505512418610017810330.00%22577.27%06613050.77%7317042.94%469349.46%109491336011859
LHS15514000001419-531200000810-22020000069-321422361025611606342541227673210511545.45%16568.75%06612254.10%9015657.69%337544.00%9651111479144
LHS17734000001919031200000880422000001111061935540088302388474800222562812718422.22%13376.92%014023858.82%13122259.01%6810167.33%166117164488944
LHS1840400000916-720200000710-32020000026-409182700531013251404011294128787228.57%13376.92%07615050.67%5913942.45%307042.86%936394295225
LHS19734000002023-3321000001312141300000711-462035550078412007373486237723211421523.81%12191.67%09421743.32%10823545.96%5211545.22%162110173529447
Total Playoff3511240000093124-3117512000005167-1618612000004257-1522931582512029362441055368335331211334401269729782126.92%912374.73%149396750.98%548108050.74%27454050.74%734436821300575293