Moose

GP: 8 | W: 4 | L: 3 | OTL: 1 | P: 9
GF: 25 | GA: 27 | PP%: 16.67% | PK%: 81.82%
GM : Keven Simard | Morale : 75 | Team Overall : 60
Next Games #121 vs Rampage
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SP
1Curtis McKenzieX100.005947636677848664646463576567634875630
2Ben StreetX100.006041706372798462706561626081683575630
3Reid BoucherXX100.005835846669786165516366586669665975630
4Spencer Abbott (R)X100.005636756763676466626563526279663675620
5Colby CaveX100.005643725973709558626053625663594975610
6Morgan KlimchukX100.005542736368719261646159566163598675610
7Tim KennedyX100.005844696160618959656556565369653675600
8Jack RodewaldX100.005544685975699558595757575964604975590
9Sean MaloneX100.005642725668649555625555565763595575590
10Brendan RanfordX100.005442735669688555645955565366625375580
11Nick MoutreyXXX100.006042745584716354645551565562585075580
12John GilmourX100.006635866473806464306463556469674775630
13Brett KulakX100.006340786378738062306361596267646075620
14Chris ButlerX100.005842756173679559306153595669654475610
15Doyle Somerby (R)X100.006951685497707253305955565467605875610
16Carson SoucyX100.006345665684569555305755565263596175600
17Will O'NeillX100.005941765675638955305757565469654575590
18Evan McEnenyX100.005740785784755756306052565564604975590
Scratches
1Melker KarlssonX100.006935786770818366616565806675693675670
2Brendan WoodsXX100.005843725484756153635362565465616175580
3John AlbertX100.005942755566638454695656565369654675580
4Dylan SadowyX100.005441775176755950595157565062585075570
5Guillaume BriseboisX100.005541755574549554305755565260565075580
6Zach LeslieX100.005528785164606551305451595069614575570
7Nolan ValleauX100.005640785168756350305158565065614875560
TEAM AVERAGE100.00594174597470795850595858576762507560
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Marek Langhamer100.00685554786766686766686767714875650
2Samuel Montembeault (R)100.00656885826463656463656467717075650
Scratches
TEAM AVERAGE100.0067627080666567666567666771597565
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Darryl Sydor70736772757072CAN453550,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOS GP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
1Reid BoucherMoose (WPG)LW/RW8549-1000153642413.89%116620.871127260001190030.00%4000001.0800000201
2Colby CaveMoose (WPG)C844808010182331217.39%315619.61123725000180045.85%20500001.0200000110
3Morgan KlimchukMoose (WPG)LW85383006112561520.00%111614.5700012000001050.00%800001.3700000002
4Ben StreetMoose (WPG)C8156-300516229174.55%119924.881128260002360054.85%20600000.6000000000
5Jack RodewaldMoose (WPG)RW82350202141851211.11%014818.55112625000001025.00%400000.6700000110
6Cody McLeodMoose (WPG)LW8235-31404712308176.67%118523.210118240000261042.47%7300000.5400000010
7Spencer AbbottMoose (WPG)LW8145-1201114239184.35%016320.451128250000131052.94%1700000.6100000001
8Tim KennedyMoose (WPG)C8235220331244138.33%111414.2700000000000046.09%11500100.8800000000
9Brett KulakMoose (WPG)D8044-100101112790.00%1116420.56011926000027000.00%000000.4900000010
10Carson SoucyMoose (WPG)D813414015223250.00%49411.8100000000016000.00%000000.8500000001
11Doyle SomerbyMoose (WPG)D8044-2602492370.00%1115919.91011025000024000.00%000000.5000000000
12Evan McEnenyMoose (WPG)D81232402531133.33%2455.740000000000000.00%000001.3100000000
13John GilmourMoose (WPG)D8022-11401667140.00%718823.54000426000024000.00%000000.2100000000
14Haydn FleuryJetsD6022-28012715760.00%714223.780111321000018000.00%000000.2800000000
15Nick MoutreyMoose (WPG)C/LW/RW811212063102610.00%111314.1600000000000050.00%400000.3500000000
16Chris ButlerMoose (WPG)D5011220671130.00%56713.460000000001000.00%000000.3000000000
17Will O'NeillMoose (WPG)D8011-100261130.00%410212.840000500005000.00%000000.1900000000
18Curtis McKenzieMoose (WPG)LW2000000000000.00%021.020000000001000.00%000000.0000000000
19Brendan RanfordMoose (WPG)LW3000000000000.00%000.110000000000000.00%000000.0000000000
20Brendan WoodsMoose (WPG)C/LW3000-100031000.00%0196.4900000000080061.90%2100000.0000000000
21Sean MaloneMoose (WPG)C5000000000000.00%030.620000000003000.00%100000.0000000000
Team Total or Average144254974-5680196180255741699.80%60235416.35510157126200042364047.84%69400100.6300000445
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3
1Marek LanghamerMoose (WPG)84210.9003.3940700232300000.000080000
2Samuel MontembeaultMoose (WPG)20100.9023.0878004410000.000008000
Team Total or Average104310.9003.3448500272710000.000088000


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract StatusType Current Salary Salary Cap Salary Cap Remaining Exclude from Salary Cap Link
Ben StreetMoose (WPG)C301987-12-31No200 Lbs5 ft11NoNoYes1UFAPro & Farm850,000$0$0$NoLink / NHL Link
Brendan RanfordMoose (WPG)LW251992-12-31No205 Lbs5 ft10NoNoNo1RFAPro & Farm750,000$0$0$NoLink / NHL Link
Brendan WoodsMoose (WPG)C/LW251992-12-31No210 Lbs6 ft4NoNoNo3RFAPro & Farm925,000$0$0$NoLink / NHL Link
Brett KulakMoose (WPG)D231994-12-31No187 Lbs6 ft2NoNoNo2ELCPro & Farm815,000$0$0$NoLink / NHL Link
Carson SoucyMoose (WPG)D231994-12-31No208 Lbs6 ft5NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Chris ButlerMoose (WPG)D311986-12-31No196 Lbs6 ft1NoNoNo1UFAPro & Farm600,000$0$0$NoLink / NHL Link
Colby CaveMoose (WPG)C231994-12-31No200 Lbs6 ft1NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Curtis McKenzieMoose (WPG)LW261991-12-31No205 Lbs6 ft2NoNoNo1RFAPro & Farm800,000$0$0$NoLink / NHL Link
Doyle SomerbyMoose (WPG)D231994-12-31Yes221 Lbs6 ft6NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Dylan SadowyMoose (WPG)RW211996-12-31No180 Lbs6 ft1NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Evan McEnenyMoose (WPG)D231994-12-31No203 Lbs6 ft2NoNoNo1ELCPro & Farm999,999$0$0$NoLink / NHL Link
Guillaume BriseboisMoose (WPG)D201997-12-31No175 Lbs6 ft2NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Jack RodewaldMoose (WPG)RW231994-12-31No189 Lbs6 ft2NoNoNo2ELCPro & Farm550,000$0$0$NoLink / NHL Link
John AlbertMoose (WPG)C281989-12-31No190 Lbs5 ft11NoNoNo3UFAPro & Farm925,000$0$0$NoLink / NHL Link
John GilmourMoose (WPG)D241993-12-31No195 Lbs6 ft0NoNoNo2RFAPro & Farm999,999$0$0$NoLink / NHL Link
Marek LanghamerMoose (WPG)G231994-12-31No190 Lbs6 ft2NoNoNo3ELCPro & Farm650,000$0$0$NoLink / NHL Link
Melker Karlsson (1 Way Contract)JetsC271990-12-31No180 Lbs6 ft0NoNoYes4RFAPro & Farm1,850,000$1,850,000$1,662,921$NoLink / NHL Link
Morgan KlimchukMoose (WPG)LW221995-12-31No185 Lbs6 ft0NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Nick MoutreyMoose (WPG)C/LW/RW221995-12-31No222 Lbs6 ft3NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Nolan ValleauMoose (WPG)D251992-12-31No180 Lbs6 ft1NoNoNo1RFAPro & Farm999,999$0$0$NoLink / NHL Link
Reid Boucher (1 Way Contract)Moose (WPG)LW/RW241993-12-31No195 Lbs5 ft10NoNoYes3RFAPro & Farm850,000$850,000$764,045$NoLink / NHL Link
Samuel MontembeaultMoose (WPG)G211996-12-31Yes192 Lbs6 ft3NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Sean MaloneMoose (WPG)C221995-12-31No190 Lbs6 ft0NoNoNo3ELCPro & Farm925,000$0$0$NoLink / NHL Link
Spencer AbbottMoose (WPG)LW291988-12-31Yes170 Lbs5 ft9NoNoNo3UFAPro & Farm925,000$0$0$NoLink / NHL Link
Tim KennedyMoose (WPG)C311986-12-31No175 Lbs5 ft10NoNoYes3UFAPro & Farm925,000$0$0$NoLink / NHL Link
Will O'NeillMoose (WPG)D291988-12-31No190 Lbs6 ft1NoNoNo1UFAPro & Farm550,000$0$0$NoLink / NHL Link
Zach LeslieMoose (WPG)D231994-12-31No175 Lbs6 ft0NoNoNo2ELCPro & Farm999,999$0$0$NoLink / NHL Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2724.67193 Lbs6 ft12.37899,629$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Cody McLeodBen StreetReid Boucher40122
2Spencer AbbottColby CaveJack Rodewald30122
3Morgan KlimchukTim KennedyNick Moutrey20122
4Cody McLeodSpencer AbbottBen Street10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Chris ButlerJohn Gilmour40122
2Brett KulakDoyle Somerby30122
3Will O'NeillCarson Soucy20122
4Will O'NeillEvan McEneny10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Cody McLeodBen StreetReid Boucher60122
2Spencer AbbottColby CaveJack Rodewald40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Will O'NeillJohn Gilmour60122
2Brett KulakDoyle Somerby40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Cody McLeodBen Street60122
2Reid BoucherSpencer Abbott40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Carson SoucyJohn Gilmour60122
2Brett KulakDoyle Somerby40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Cody McLeod60122Carson SoucyJohn Gilmour60122
2Ben Street40122Brett KulakDoyle Somerby40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Cody McLeodBen Street60122
2Reid BoucherSpencer Abbott40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Will O'NeillJohn Gilmour60122
2Brett KulakDoyle Somerby40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Cody McLeodBen StreetReid BoucherBrett KulakJohn Gilmour
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Cody McLeodBen StreetReid BoucherBrett KulakJohn Gilmour
Extra Forwards
Normal PowerPlayPenalty Kill
Morgan Klimchuk, Tim Kennedy, Ben StreetMorgan Klimchuk, Tim KennedyCody McLeod
Extra Defensemen
Normal PowerPlayPenalty Kill
John Gilmour, Carson Soucy, Will O'NeillJohn GilmourCarson Soucy, Will O'Neill
Penalty Shots
Cody McLeod, Ben Street, Reid Boucher, Spencer Abbott, Colby Cave
Goalie
#1 : Marek Langhamer, #2 : Samuel Montembeault
Custom OT Lines Forwards
Cody McLeod, Ben Street, Reid Boucher, Spencer Abbott, Colby Cave, Morgan Klimchuk, Morgan Klimchuk, Tim Kennedy, Jack Rodewald, Sean Malone, Nick Moutrey
Custom OT Lines Defensemen
Chris Butler, John Gilmour, Brett Kulak, Doyle Somerby, Will O'Neill


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
1Admirals1010000025-3000000000001010000025-300.00024600101041328394735426825500.00%4175.00%012926249.24%14330147.51%6012348.78%1871271946010349
2Checkers1000010056-11000010056-10000000000010.5005101500101041318394735353624500.00%30100.00%012926249.24%14330147.51%6012348.78%1871271946010349
3Comets11000000532110000005320000000000021.00051015001010414883947353688214125.00%4250.00%012926249.24%14330147.51%6012348.78%1871271946010349
4Condors1010000012-11010000012-10000000000000.000123001010412783947352488254125.00%40100.00%012926249.24%14330147.51%6012348.78%1871271946010349
5Rampage11000000321000000000001100000032121.000369001010413583947353246185120.00%30100.00%012926249.24%14330147.51%6012348.78%1871271946010349
6Reign11000000413110000004130000000000021.000481200101041308394735267636200.00%30100.00%012926249.24%14330147.51%6012348.78%1871271946010349
7Roadrunners10001000321100010003210000000000021.00036900101041298394735341614312150.00%6183.33%012926249.24%14330147.51%6012348.78%1871271946010349
8Stars1010000026-4000000000001010000026-400.0002350010104123839473542812163133.33%6266.67%012926249.24%14330147.51%6012348.78%1871271946010349
Total833011002527-2521011001814431200000713-690.563254974001010412558394735271606819630516.67%33681.82%012926249.24%14330147.51%6012348.78%1871271946010349
_Since Last GM Reset833011002527-2521011001814431200000713-690.563254974001010412558394735271606819630516.67%33681.82%012926249.24%14330147.51%6012348.78%1871271946010349
_Vs Conference623001001722-531100100109131200000713-650.417173350001010411788394735201364614424312.50%23386.96%012926249.24%14330147.51%6012348.78%1871271946010349
_Vs Division31100100713-60000010000031100000713-630.500713200010104190839473511618265913215.38%13376.92%012926249.24%14330147.51%6012348.78%1871271946010349

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
89W2254974255271606819600
All Games
GPWLOTWOTL SOWSOLGFGA
83311002527
Home Games
GPWLOTWOTL SOWSOLGFGA
52111001814
Visitor Games
GPWLOTWOTL SOWSOLGFGA
3120000713
Last 10 Games
WLOTWOTL SOWSOL
430100
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
30516.67%33681.82%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
8394735101041
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
12926249.24%14330147.51%6012348.78%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
1871271946010349


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
2 - 2018-10-0513Moose3Rampage2WBoxScore
4 - 2018-10-0721Moose2Stars6LBoxScore
7 - 2018-10-1041Reign1Moose4WBoxScore
9 - 2018-10-1252Moose2Admirals5LBoxScore
11 - 2018-10-1473Checkers6Moose5LXBoxScore
13 - 2018-10-1685Condors2Moose1LBoxScore
15 - 2018-10-1898Comets3Moose5WBoxScore
17 - 2018-10-20114Roadrunners2Moose3WXBoxScore
19 - 2018-10-22121Rampage-Moose-
21 - 2018-10-24133Marlies-Moose-
23 - 2018-10-26146Moose-Griffins-
24 - 2018-10-27157Moose-Marlies-
29 - 2018-11-01183Moose-Thunderbirds-
30 - 2018-11-02194Thunderbirds-Moose-
37 - 2018-11-09240Eagles-Moose-
39 - 2018-11-11258Devils-Moose-
42 - 2018-11-14276Bears-Moose-
44 - 2018-11-16291Americans-Moose-
47 - 2018-11-19316Moose-Comets-
49 - 2018-11-21322Moose-Heat-
50 - 2018-11-22339Moose-Wild-
51 - 2018-11-23355Moose-Rampage-
54 - 2018-11-26376Penguins-Moose-
56 - 2018-11-28389IceHogs-Moose-
58 - 2018-11-30401Moose-Devils-
59 - 2018-12-01411Moose-Wolf Pack-
61 - 2018-12-03422Moose-Sound Tigers-
64 - 2018-12-06443Rampage-Moose-
66 - 2018-12-08460Phantoms-Moose-
68 - 2018-12-10473IceHogs-Moose-
70 - 2018-12-12486Condors-Moose-
71 - 2018-12-13488Moose-IceHogs-
73 - 2018-12-15511Crunch-Moose-
75 - 2018-12-17522Moose-Reign-
77 - 2018-12-19538Moose-Barracuda-
79 - 2018-12-21557Moose-Comets-
81 - 2018-12-23578Heat-Moose-
83 - 2018-12-25597Wild-Moose-
85 - 2018-12-27607Moose-Condors-
89 - 2018-12-31635Moose-Penguins-
91 - 2019-01-02651Stars-Moose-
93 - 2019-01-04666Eagles-Moose-
95 - 2019-01-06675Moose-Wild-
96 - 2019-01-07686Griffins-Moose-
98 - 2019-01-09704Gulls-Moose-
100 - 2019-01-11720Wolves-Moose-
102 - 2019-01-13729Moose-Admirals-
104 - 2019-01-15742Moose-Stars-
109 - 2019-01-20771Moose-Phantoms-
110 - 2019-01-21773Moose-Bruins-
112 - 2019-01-23780Monsters-Moose-
114 - 2019-01-25801Gulls-Moose-
117 - 2019-01-28819Barracuda-Moose-
119 - 2019-01-30830Moose-Rocket-
121 - 2019-02-01845Moose-Senators-
122 - 2019-02-02853Moose-Americans-
124 - 2019-02-04874Wolf Pack-Moose-
126 - 2019-02-06887Eagles-Moose-
128 - 2019-02-08903Senators-Moose-
132 - 2019-02-12926Moose-Eagles-
134 - 2019-02-14944Moose-Wolves-
136 - 2019-02-16956Moose-Roadrunners-
138 - 2019-02-18977Wild-Moose-
141 - 2019-02-21998Admirals-Moose-
Trade Deadline --- Trades can’t be done after this day is simulated!
143 - 2019-02-231010Moose-Monsters-
145 - 2019-02-251028Moose-Crunch-
148 - 2019-02-281045Moose-Checkers-
150 - 2019-03-021064Moose-Bears-
152 - 2019-03-041079Barracuda-Moose-
154 - 2019-03-061092Bruins-Moose-
156 - 2019-03-081110Heat-Moose-
158 - 2019-03-101119Moose-Reign-
160 - 2019-03-121132Moose-Gulls-
161 - 2019-03-131147Moose-Wolves-
163 - 2019-03-151163Admirals-Moose-
165 - 2019-03-171177Stars-Moose-
168 - 2019-03-201196Sound Tigers-Moose-
170 - 2019-03-221214Rocket-Moose-
172 - 2019-03-241221Moose-IceHogs-
173 - 2019-03-251235Moose-Wild-
175 - 2019-03-271244Moose-Eagles-
177 - 2019-03-291257Moose-Roadrunners-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Arena Capacity20001000
Ticket Price2515
Attendance7,8274,001
Attendance PCT78.27%80.02%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueArena CapacityTeam Popularity
3 2366 - 78.85% 63,923$319,613$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
282,400$ 2,221,500$ 2,171,500$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
0$ 226,461$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
2,301,214$ 159 15,658$ 2,489,622$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
LHS0580313702235205208-34011220122298124-264020150101310784236220534454911044926492259621874748462194881102318541944422.68%1963980.10%7716139851.22%725146649.45%585114451.14%150266317849921828920
LHS0580343503224279275440151702114149144540191801110130131-1682794647431483104878281589998891336253692578122032075526.57%1825072.53%7848162552.18%728143850.63%660131950.04%161678417559481731872
LHS06804618026622922246840266023211521044840201200341140120209229247676804691131021326997641014903602172725101022892236026.91%2464780.89%9921171853.61%823159051.76%677127253.22%1642812355519561718845
LHS06803532054222632323140201305200139974240151900222124135-117026342769001157100998235870280183632229679755721912032914.29%1623479.01%4801155051.68%735152248.29%543117146.37%1569742353819051736875
LHS077641210223729523461382110010151501123838201101222145122238229549679102781169682793948989838512448800128520582205223.64%2535279.45%8909173952.27%808159750.59%686131152.33%160883914727451533763
LHS07763926064102632045938181304300116104123821130211014710047782634306931560112848256678095181426228374252520092014723.38%1543179.87%9861157054.84%865160653.86%620118252.45%156479714307461583805
LHS0876432103243301223783824801131151100513819130211215012327863015058061472125971129311007102887837258982699522172054220.49%2214380.54%4970191350.71%898181649.45%573115549.61%161987715127451474718
LHS098043170744532024773402380421215911544402090323316113229863205138330188129921431751074107898667275189089322662023617.82%1562087.18%41122205754.55%930181451.27%581122047.62%172494816017731544765
LHS10803822074452892315840221102221143108354016110522414612323762894837723272125811632521164117088175266796882023382064722.82%1283076.56%41050207650.58%867176449.15%621119751.88%174895615387631571788
LHS118044170736329121081401810042421431162740267031211489454882914877782376110921632381108112697264259585468723302255926.22%1343276.12%31023205449.81%903176751.10%614122949.96%173895215467821576777
LHS1276461900542299237623824110030014311330382280024215612432922995048030174117104633031168118294626265089187720452276428.19%1253175.20%11031200851.34%862170850.47%626123450.73%168694914617101449722
LHS13803230024842622539401615022231381317401615002611241222642624286900064100881830731007109395461282694066321932145827.10%2586176.36%111059200752.77%1004196751.04%617121950.62%170691116027861557768
LHS14804425030443232447940231301021163117464021120202316012733883235408633181129106113292112311471003492854916107423342277332.16%2616674.71%4990203548.65%1018201850.45%627126349.64%174996515777721522747
LHS158039250163627824830402510002121531203340141501424125128-378278458736516511594532641075117899148289893966021792174721.66%2244878.57%31039207850.00%1020205349.68%635121152.44%174296916007661517748
LHS16765211021462891571323824601133136766038285010131538172104289526815051121026912262088983986661183459142115542686323.51%1812983.98%11440265154.32%1209218555.33%650115756.18%203914551590535987516
LHS17805090518729816013840274010441447965402350414315481731002985218190121011048020288796693994891218560556317292506124.40%2333784.12%31613293854.90%1481265055.89%692125055.36%2097148917575781030530
LHS1875511702221273156117372850102114268743823120120013188431022735017740611079806268995582390118185856545614392404920.42%2043284.31%31553268657.82%1223224454.50%650115156.47%199114271583522945490
LHS1982323601364206214-84119170013111210484113190123394110-16642063675733576725116209166271569361241170637414752165324.54%1602783.13%11058232545.51%1197274243.65%591130245.39%1881127419946111096544
20833011002527-2521011001814431200000713-69254974001010412558394735271606819630516.67%33681.82%012926249.24%14330147.51%6012348.78%1871271946010349
Total Regular Season142574342106156747050513984106771338620003328333325491946603712357221028284137250220384641489505185191357020771392195415702065156016995180291614491444318146211373236899397594423.75%351171579.64%86191333669052.15%174393424850.92%113082211051.14%314161794533099157002651013252
Playoff
LHS06624000002226-4312000001113-2312000001113-24223658008590224706785225185521756116.67%18383.33%17515648.08%8317148.54%6111353.98%125673684201411355
LHS071046000004449-5523000002025-55230000024240844691130012151614181401471211035913118227920945.00%391269.23%114026153.64%11323348.50%9420146.77%2151212129919089
LHS07624000001919031200000981312000001011-14192948004780194546575022784181575240.00%10370.00%17412957.36%5612744.09%508360.24%116601245511859
LHS08624000001420-632100000111103030000039-641424380043612428762885215808116415320.00%25388.00%08716951.48%7516346.01%469548.42%130721265811055
LHS09734000002831-3413000001219-7321000001612462848760013780293105103850301841011641218.33%12650.00%19217353.18%8418545.41%5913145.04%147861496312360
LHS10117400000363065410000019127633000001718-1143662980071811046113820811504451256127513430.77%17570.59%013030043.33%16228856.25%8617848.31%22212423610220198
LHS11231670000083641912930000045321311740000038326328314022310192536392632731227611960321230588661928.79%451077.78%126158144.92%31663749.61%16835048.00%479265502214415209
LHS12126600000423576420000024159624000001820-2124269111001418915571941971412547116216531141921.95%25772.00%019037151.21%15331049.35%9419149.21%284167242111225116
LHS1322166000008374911101000004533121165000003841-3328314522800272725481525727924039937326259593561526.79%811581.48%324451147.75%30060349.75%17035747.62%453237494219425211
LHS1411650000041374633000002120153200000201731241701111010131714641851421334463131116302311238.71%39879.49%112729343.34%15330350.50%8017246.51%24213722510219998
LHS15624000002023-330300000814-63210000012934203454003791280811088110194581818915213.33%9366.67%09118250.00%5512045.83%459945.45%139801155511556
LHS16106400000261885410000012575230000014131122649750316631311921058925228696621431722.58%31487.10%018533155.89%17529359.73%8115253.29%2651862327713870
LHS17945000003427753200000231211413000001115-4834649801617101316931028833334989922835720.00%39976.92%115934046.76%19837852.38%8215752.23%2381632447412865
LHS182414100000059518137600000292721174000003024628591071660621191907102192232671680194164434681014.71%72987.50%245680956.37%43477356.14%18733755.49%579403566172300150
Total Playoff1639073000005515044784513300000289246437939400000026225841805519461497210164187186146211204221201884165606519481612407341410124.40%4629779.00%122311460650.17%2357458451.42%1303261649.81%364021747157342228061397